Finite Element Mesh Partitioning based on Multigraph Diffusion

Stefan Schamberger
schaum@uni-paderborn.de

PDCN 2005
Outline

1 Motivation
 - FEM Simulations
 - Multilevel Paradigm
 - Example

2 Diffusion Based Partitioning
 - The Bubble Framework
 - Diffusion in Graphs
 - Integration: Growing with Diffusion

3 Level Hierarchy

4 Example

5 Conclusion and Further Work
FEM Simulations:

- Simulation space is discretized into a mesh.
- Mesh is partitioned and distributed to the processing nodes.
- All processing nodes should have same amount of work.
- Communication is expensive. Small partition boundary is wanted!
- After mesh changes, partitions have to be rebalanced.
Existing libraries (Chaco, Metis, Jostle, Party) follow the multi-level paradigm.

- Smaller, similar instances are created via a matching.
- Smallest Graph is partitioned.
- Solution is mapped onto larger graphs and improved by vertex exchange heuristics.

Two important operations:
- Matching Algorithm (HEM, LAM).
- Vertex Exchange Heuristic (KL, HS).
Motivation

State-of-the-art heuristics:

- are fast.
- compute solutions with low cuts.
- mainly minimize cut, but not real communication costs (B. Hendrickson).
- cause relatively high migration (L. Oliker).
- are based on sequential vertex exchange strategies.
- do not compute smooth partition boundaries.
- cannot even guarantee connectivity.

Idea: Round partitions with smooth borders should cause little communication (at least for dual graphs from FEM computations).
Example (100 × 100 Grid)
Advantages of shape optimized partitions

Jostle
- cut: 549
- boundary: 992
- comm: 1020

Shape optimized partitioning
- cut: 578
- boundary: 862
- comm: 892
The Bubble Framework
A shape optimizing learning framework

Consists out of three operations:

1. Determination of initial seeds.
2. Partition growing.
3. Determination of partition centers (seeds).

Init, Grow and Move
The First Order Diffusion Scheme

FOS is a local iterative algorithm.

- Initial load diffuses into a graph.
- Converges towards $\| \cdot \|_2$-minimal balancing flow.

Definition FOS

Given a connected graph $G = (V, E)$, a suitable constant α and the initial load vector l, the local iterative *First Order Scheme* computes a l_2-minimal balancing flow f. In each iteration i, it performs:

\[
\begin{align*}
x^i_{e=(u,v)} &= 1/\alpha \cdot (l^i_u - l^i_v) & (1) \\
f^{i+1}_e &= f^i_e + x^i_e & (2) \\
l^{i+1}_v &= l^i_v - \sum_{e=(v,*) \in E} x^i_e & (3)
\end{align*}
\]
A New Growing Mechanism
Integrating Diffusion into the Bubble Framework

Motivation
FEM Simulations
Multilevel Paradigm
Example

Diffusion Based Partitioning
The Bubble Framework
Diffusion in Graphs
Integration

Level Hierarchy
Example
Conclusion
Decrease Run-Time by Levels
Adopting the Multilevel Paradigm

Two possible ways:
- Decrease the problem size.
- Faster Diffusion.

Combine them in the following way:
- Create a level hierarchy and choose two designated levels.
- Learn on the middle level.
- Compute the diffusion with the help if the lower levels.
- Finally interpolate to the highest (initial) level.

Dedicated Levels and Possible Transitions
Diffusion on the lower and its projection onto the middle level.
Conclusion and Further Work

Applying Levels:
- Run-time decreases by about one order of magnitude.
- Speed-up less than expected.
- Solution quality does not decrease, if right parameters are chosen.

But:
- The choice of the iteration number becomes more difficult.
- Resulting Algorithm is less reliable.

Further (meanwhile finished) Work: Problem can be solved by applying an alternative diffusion scheme (FOS/A).